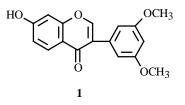
## A NEW ISOFLAVONE FROM Astragalus peregrinus


R. R. Abd El-Latif,<sup>1</sup> M.H. Shabana,<sup>1</sup> A.H. El-Gandour,<sup>2</sup> R.M. Mansour,<sup>1</sup> and M. Sharaf<sup>1</sup>

In addition to diadzen, genisten, luteolin, apigenin, and apigenin-7-O-neohesperidoside, the methanol extract of the aerial parts of Astragalus peregrinus yielded a new isoflavone identified as 7-hydroxy-3',5'-dimethoxyisoflavone.

Key words: Astragalus peregrinus, Fabaceae, new isoflavone, anticancer activity.

Plants of *Astragalus* genus are interesting not only for the variety of chemical compounds in them but also for their biological activity [1]. In continuation of our study on the genus *Astragalus* that started with the investigation of the flavonoid content of *A. spinosus* [2], the present communication deals with the isolation and structure elucidation of six flavonoids including one new isoflavone from *A. peregrinus*. The anticancer activity is also evaluated.

The MeOH extract of *A. peregrinus* was fractionated on a polyamide column. Purification was achieved by a combination of PPC and silica gel TLC and Sephadex LH-20. Compound **1** was isolated. The isolated known compounds were identified by comparison of their spectral data with those previously reported [3, 4, 5].



Compound **1** was isolated as a yellowish white powder. It shows chromatographic properties similar to those reported for isoflavone aglycones [6]. The UV spectral data of **1** with diagnostic shift reagents indicated an isoflavone with the 7-hydroxyl group and absence of the *ortho*-dihydroxyl pattern at the B-ring [7].

EI-MS showed a molecular ion peak at m/z 298 (50%) in accordance with isoflavone bearing one hydroxyl and two methoxyls group. A fragment at m/z 283 (100%) is due to the loss of the  $-CH_3$  group. The most important fragments were observed at m/z 136 (10%), 160 (11%) and 163 (11%) for  $A_1^+$ ,  $B_1^+$  and  $B_2^+$ , confirming attachment of the hydroxyl group to the A-ring and the two methoxyl groups to the B-ring [8, 9].

The <sup>1</sup>H-NMR spectrum of **1** showed the characteristic H-2 signal of isoflavone as a singlet at  $\delta$  8.20 [10]. The two aromatic protons H-5 and H-6 appeared at  $\delta$  7.9 (d, J = 9 Hz) and 6.80 (dd, J = 9, 2 Hz). The signal at  $\delta$  6.65 (d, J = 2 Hz) was assigned to H-8. The B-ring protons appeared as two signals integrated to three protons at  $\delta$  7.15 (d, J = 2 Hz, H-4') and  $\delta$  7.0 (d, J = 2Hz, H-2', 6'). The chemical shifts of these three protons seem to be shifted upfield in comparison with those reported for the B-ring hydroxyl groups of isoflavone [11]. This is due to the electron donating ring substituents. The two methoxyl groups appeared as sharp singlet at  $\delta$  3.90. From the above results compound **1** is identified as 7-hydroxy-3', 5'-dimethoxyisoflavone.

Tested against U251 human cells, responsible for brain tumor, compound 1 showed cytotoxicity with  $IC_{50}$  of 9.5 mg/ml.

UDC 547.97

<sup>1)</sup> Phytochemistry and Plant Systematic Department, National Research Centre, Dokki-12311, Cairo, Egypt, e-mail: sharafali58@hotmail.com; 2) Chemistry Department, Faculty of Science, Cairo University, Egypt, Bani-Souef branch. Pablished in Khimiya Prirodnykh Soedinenii, No. 6, pp. 443-444, November-December, 2003. Original article submitted September 30, 2003.

## EXPERIMENTAL

**Plant Material.** *A. peregrinus* aerial parts were collected in March 2000 from Borg El-Arab, 60 km from Alexandria, and authenticated by Dr. S.A. Kawashty. A voucher specimen was deposited in the Herbarium at NRC (CAIRC).

**Extraction and Isolation**. Dried plant (1 kg) was extracted with 80% MeOH. The concentrated extract was subjected to a polyamide column eluted with  $H_2O$ -EtOH mixture with increasing amount of EtOH. PPC using  $H_2O$ , 15% AcOH, BAW (BuOH-AcOH- $H_2O$ , 4:1:5, upper phase) afforded pure samples of diadzen, genisten, luteolin, apigenin, and apigenin-7-O-neohesperidoside. A combination of TLC (CHCl<sub>3</sub>-EtOAc-acetone, 5:1:4) and Sephadex LH-20 afforded **1**.

**7-Hydroxy-3',5'-dimethoxyisoflavone (1).** UV-spectra (MeOH,  $\lambda_{max}$ , nm): 247, 260sh, 285; +NaOMe: 257, 332; +AlCl<sub>3</sub> : 248, 264sh, 287; AlCl<sub>3</sub>+HCl : 250, 262sh, 287, 380; +NaOAc : 257, 303sh, 337; NaOAc+H<sub>3</sub>BO<sub>3</sub>: 251, 260sh, 284. <sup>1</sup>H NMR ( 270 MHz, DMSO-d<sub>6</sub>,  $\delta$ , J/Hz,): 8.20 (1H, s, H-2), 7.90 (1H, d, J = 9, H-5), 6.80 (1H, dd, J = 9, 2, H-6), 6.65 (1H, d, J = 2, H-8), 7.15 (1H, d, J = 2, H-4'), 7.00 (2H, d, J = 2, H-2', 6'), 3.90 (6H, s, 6H, 2'OCH<sub>3</sub>).

**Bioassay**. Measurement of the cytotoxicity of compound **1** was carried out according to the reported procedure [12]. The relation between the surviving fraction and drug concentrations is plotted to get the survival curve of the cell line after the specified compound.

## ACKNOWLEDGMENT

The authors are grateful to the National Cancer Institute, Cairo University for measuring the cytotoxic activity.

## REFERENCES

- 1. A.M. Rizk and A.S. Al-Nowaihi, *The Phytochemistry of the Flora of Qatar*, Richmond Kingprint, Great Britain, 1999, p. 334.
- 2. M. H. Shabana, *Egypt. J. Sci.*, **43**, 2, 19 (2002).
- 3. R. M. Carmann, J. K. L. Russell-Maynard, and R. C. Schumann, Aust. J. Chem., 38, 485 (1985).
- 4. A. Mallk and M. P. Yuldashev, *Chem. Nat. Comp.*, **38**, 1, 104 (2002).
- 5. Y. Migaichi, H. Kizu, and T. Tomimori, C-C. Lin, *Chem. Pharm. Bull.*, **37**, 794 (1989).
- 6. J. B. Harborne, *Comparative Biochemistry of the Flavonoids*, Academic Press, London, 1967.
- 7. T. J. Mabry, K. R. Markham, and M. B. Thomas, *The Systematic Identification of Flavonoids*, Springer, Berlin, 1970.
- 8. M. Sharaf, R. M. A. Mansour, and N. A. M. Saleh, *Biochem. Syst. Ecol.*, 20, 5, 443 (1992).
- 9. J. B. Harborne, T. J. Mabry, and H. Mabry, *The Flavonoids*, Chapman and Hall, London, 1975, p. 79.
- 10. Ref. 7, pp. 312-318.
- 11. M. Sharaf, M. A. El-Ansari, and N. A. M. Saleh, Biochem. Syst. Ecol., 25, 2, 161 (1997).
- P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd, J. Natl. Cancer Inst., 82, 1107 (1990).